metal-organic compounds

V = 2542.59 (3) Å³

Mo $K\alpha$ radiation

 $0.35 \times 0.24 \times 0.12 \text{ mm}$

22757 measured reflections

5323 independent reflections

4971 reflections with $I > 2\sigma(I)$

 $\mu = 4.60 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.073$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bis{µ-2-[(dimethylamino)methyl]benzeneselenolato}bis[chloridopalladium(II)] dichloromethane hemisolvate

Tapash Chakravorty,^a Harkesh B. Singh^a and Ray J. Butcher^b*

^aDepartment of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India, and ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA Correspondence e-mail: rbutcher99@yahoo.com

Received 22 December 2011; accepted 23 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.013 Å; R factor = 0.051; wR factor = 0.131; data-to-parameter ratio = 22.2.

The asymmetric unit of the title compound, [Pd₂(C₉H₁₂NSe)₂Cl₂]·0.5CH₂Cl₂, contains two half-molecules, each lying on a twofold axis; each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged *cis* arrangement about the Pd^{2+} coordination spheres. For this hinged dimeric structure, the angles between the two coordination planes in each molecule are 15.02 (5) and 14.91 (5)°. This hinged cis arragement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Se atoms [3.4307 (9) and 3.4317 (9) Å] of adjoining molecules, leading to an overall tetrameric structure. During the refinement stages, it was noticed that there were dichloromethane solvent molecules present disordered about a twofold axis. After unsuccessful attempts were made to model this, they were removed using SQUEEZE.

Related literature

For applications of organoselenide and organotelluride ligands in materials science, see: Morley *et al.* (2006); Ford *et al.* (2004). For structures of dimeric Se-bridged Pd derivatives, see: Nakata *et al.* (2009); Chakraborty *et al.* (2011); Oilunkaniemi *et al.* (1999, 2001); Brown & Corrigan (2004); Dey *et al.* (2006) and for structures of dimeric Te-bridged Pd derivatives, see: Oilunkaniemi *et al.* (2000); Kaur *et al.* (2009); Dey *et al.* (2006). For the use of the SQUEEZE routine in *PLATON*, see: Spek (2009).

Experimental

Crystal data $[Pd_2(C_3H_{12}NSe)_2Cl_2] \cdot 0.5CH_2Cl_2$ $M_r = 752.47$ Orthorhombic, $P2_12_12$ a = 14.2119 (1) Å b = 14.7895 (1) Å c = 12.0968 (1) Å

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2007) $T_{\rm min} = 0.655, T_{\rm max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	$\Delta \rho_{\rm max} = 1.29 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.131$	$\Delta \rho_{\rm min} = -1.45 \text{ e} \text{ Å}^{-3}$
S = 1.06	Absolute structure: Flack (1983)
5323 reflections	2261 Friedel pairs
240 parameters	Flack parameter: 0.015 (13)
H-atom parameters constrained	

lable 1		
Hydrogen-bond geo	metrv (Å.	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5A - H5AA \cdots Cl1A^{i}$	0.93	2.91	3.782 (10)	156
$C7A - H7AA \cdots Cl1A^{i}$	0.97	2.94	3.853 (8)	158
$C9A - H9AC \cdots Cl1A$	0.96	2.79	3.325 (10)	116
$C5B-H5BA\cdots Cl1B^{ii}$	0.93	2.94	3.808 (11)	156
$C8B - H8BB \cdot \cdot \cdot Cl1B$	0.96	2.80	3.347 (11)	117

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 2$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + 1$.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

HBS acknowledges the DST, New Delhi, for financial support. TC acknowledges the CSIR, New Delhi, for a fellowship. RJB acknowledges the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5157).

References

- Brown, M. J. & Corrigan, J. F. (2004). J. Organomet. Chem. 689, 2872–2879.
- Chakraborty, T., Srivastava, K., Singh, H. B. & Butcher, R. J. (2011). J. Organomet. Chem. 696, 2782–2788.
- Dey, S., Jain, V. K., Varghese, B., Schurr, T., Niemeyer, M., Kaim, W. & Butcher, R. J. (2006). *Inorg. Chim. Acta*, 359, 1449–1457.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ford, S., Morley, C. P. & Di Viara, M. (2004). Inorg. Chem. 43, 7101-7110.
- Kaur, R., Menon, S. C., Panda, S., Singh, H. B., Patel, R. P. & Butcher, R. J. (2009). Organometallics, **28**, 2363–2371.
- Morley, C. P., Webster, C. A. & Di Vaira, M. (2006). J. Organomet. Chem. 691, 4244-4249.
- Nakata, N., Uchiumi, R., Yoshino, T., Ikeda, T., Kamon, H. & Ishii, A. (2009). Organometallics, 28, 1981–1984.
- Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (1999). J. Organomet. Chem. 587, 200–206.
- Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2000). J. Organomet. Chem. 595, 232–240.
- Oilunkaniemi, R., Laitinen, R. S. & Ahlgrén, M. (2001). J. Organomet. Chem. 623, 168–175.
- Oxford Diffraction (2007). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Acta Cryst. (2012). E68, m113-m114 [doi:10.1107/S1600536811055322]

$Bis\{ \mbox{$\mu$-2-[(dimethylamino)methyl]benzeneselenolato} bis[chloridopalladium(II)] \ \ \ dichloromethane hemisolvate$

T. Chakravorty, H. B. Singh and R. J. Butcher

Comment

The coordination chemistry of transition metal complexes with both organoselenide and organotelluride ligands is a rapidly growing area due to the ability of the resulting complexes to find applications in materials science (Morley *et al.*, 2006; Ford *et al.*, 2004), and investigations of oxidation additive to low valent transition metal centers. In addition to this, organotellurium compounds have been used in catalytic carbon-carbon formation. Bridged dimers of palladium mediated by Se (Nakata *et al.*, 2009; Chakraborty *et al.*, 2011; Oilunkaniemi *et al.*, 1999; Oilunkaniemi *et al.*, 2001; Brown & Corrigan, 2004; Dey *et al.*, 2006) or Te (Oilunkaniemi *et al.*, 2000; Kaur *et al.*, 2009; Dey *et al.*, 2006) have been previously reported. Such dimers involving two square planar coordination spheres can adopt either a coplanar or hinged arrangement. The arrangement of the donor ligands with respect to the bridging plane can be *cis* or *trans*. In the case of a hinged *cis* arrangement the possibility of chirality exisits. While the majority of previously determined Se/Te bridged Pd dimeric structures are both coplanar and *trans*, there have been a small number which exhibit either a hinged or *cis* arrangement of ligands about the bridging plane (Kaur *et al.*, 2009; Oilunkaniemi *et al.*, 2000). However, in no previous case has this resulted in a chiral structure.

The title compound, bis[chlorido-(μ (Se)-2-dimethylaminomethylbenzeneselenolate)palladium(II)], C₁₈H₂₄Cl₂N₂Pd₂Se₂, crystallizes in the chiral orthorhombic space group, *P*2₁2₁2. The asymmetric unit contains 2 half molecules, each lying on a 2-fold axis and each molecule is chiral and of the same enantiomer. This is only possible as the molecule has a hinged *cis* arrangement about the Pd coordination spheres (Fig. 1). For this hinged dimeric structure the angles between the two coordination planes in each molecule are 15.02 (5) and 14.91 (5)° respectively. This hinged *cis* arragement also allows the two molecules to form pairs linked by secondary interactions between the Pd and Se of an adjoining molecule (Fig. 2) leading to a tetrameric overall structure. Apart from this the Pd—Se, Pd—Cl and Pd—N bond lengths are in the normal ranges.

Experimental

The ligand and complex were prepared using previously reported methods (Chakraborty *et al.*, 2011). Crystallization of the selenolate was done at ambient temperature from dichloromethane/hexane (2:1).

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 - 0.97 Å [$U_{iso}(H) = 1.2U_{eq}(CH, CH_2)$ [$U_{iso}(H) = 1.5U_{eq}(CH_3)$]. During the refinement stages it was noticed that there were disordered solvent molecules present. The solvent molecule is CH₂Cl₂ and it is disordered about a 2-fold axis. After unsuccessful attempts were made to model this, it was removed using the SQUEEZE routine from *PLATON* (Spek, 2009).

Figures

Fig. 1. The structure of one of the two molecules of the asymmetric unit showing the hinged *cis* arrangement of the two Pd coordination planes. The two halves of the molecule are related by 1 - x, 1 - y, z.

Fig. 2. The association of two dimeric units into a tetramer *via* matching and complementary secondary interactions between the Pd and Se of adjoining units. These interactions are shown by dashed lines.

Fig. 3. Showing the packing of the tetrameric units. Secondary interactions between Pd and Se shown by dashed lines.

Bis{µ-2-[(dimethylamino)methyl]benzeneselenolato}bis[chloridopalladium(II)] dichloromethane hemisolvate

Crystal data $[Pd_2(C_9H_{12}NSe)_2Cl_2] \cdot 0.5CH_2Cl_2$ $M_r = 752.47$ Orthorhombic, $P2_12_12$ Hall symbol: P 2 2ab a = 14.2119 (1) Å b = 14.7895 (1) Å c = 12.0968 (1) Å V = 2542.59 (3) Å³ Z = 4

F(000) = 1444
$D_{\rm x} = 1.966 {\rm ~Mg~m}^{-3}$
Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 16933 reflections
$\theta = 4.7 - 77.4^{\circ}$
$\mu = 4.60 \text{ mm}^{-1}$
T = 293 K
Prism, orange
$0.35 \times 0.24 \times 0.12$ mm

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	5323 independent reflections
Radiation source: fine-focus sealed tube	4971 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.073$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 26.8^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
ω scans	$h = -17 \rightarrow 17$
Absorption correction: multi-scan (<i>CrysAlis PRO</i> ; Oxford Diffraction, 2007)	$k = -18 \rightarrow 18$

$T_{\min} = 0.655, T_{\max} = 1.000$	$l = -15 \rightarrow 14$
22757 measured reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.051$	$w = 1/[\sigma^2(F_0^2) + (0.0803P)^2 + 6.8337P]$ where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.131$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 1.29 \text{ e} \text{ Å}^{-3}$
5323 reflections	$\Delta \rho_{min} = -1.45 \text{ e } \text{\AA}^{-3}$
240 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
0 restraints	Extinction coefficient: 0.0067 (8)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2261 Friedel pairs

Secondary atom site location: difference Fourier map Flack parameter: 0.015 (13)

Special details

Experimental. The structure of the Te analog was also determined, but at low temperature. This compound is isostructural and isomorphous with the Se compound but in this case the solvent was ordered. An Acta E submission for this structure has been made and it is currently under review (jj2116).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pd1	0.53556 (3)	0.38325 (3)	1.09852 (5)	0.03277 (16)
Pd2	0.37837 (4)	0.46542 (3)	0.40196 (5)	0.03435 (17)
Se1A	0.60568 (5)	0.52886 (5)	1.11898 (6)	0.0382 (2)
Se1B	0.53041 (5)	0.39888 (5)	0.38141 (6)	0.0396 (2)
Cl1A	0.44999 (17)	0.24995 (14)	1.0741 (3)	0.0633 (7)
Cl1B	0.23941 (16)	0.54777 (17)	0.4277 (3)	0.0681 (7)
N1A	0.6735 (4)	0.3189 (4)	1.0840 (6)	0.0423 (15)
N1B	0.3119 (5)	0.3330 (4)	0.4160 (6)	0.0450 (15)
C1A	0.6601 (5)	0.5140 (5)	0.9762 (7)	0.0373 (15)
C2A	0.6352 (6)	0.5673 (6)	0.8858 (7)	0.0481 (18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H2AA	0.5904	0.6126	0.8934	0.058*
C3A	0.6788 (7)	0.5518 (7)	0.7820 (8)	0.056 (2)
НЗАА	0.6617	0.5858	0.7205	0.067*
C4A	0.7474 (8)	0.4854 (7)	0.7735 (8)	0.062 (3)
H4AA	0.7769	0.4760	0.7058	0.074*
C5A	0.7725 (7)	0.4333 (7)	0.8620 (9)	0.058 (2)
H5AA	0.8198	0.3903	0.8540	0.070*
C6A	0.7280 (6)	0.4437 (6)	0.9648 (7)	0.0446 (18)
C7A	0.7490 (5)	0.3843 (6)	1.0628 (7)	0.0443 (17)
H7AA	0.8073	0.3520	1.0496	0.053*
H7AB	0.7576	0.4219	1.1277	0.053*
C8A	0.6919 (8)	0.2716 (7)	1.1902 (9)	0.064 (3)
H8AA	0.7536	0.2452	1.1884	0.096*
H8AB	0.6458	0.2249	1.2007	0.096*
H8AC	0.6882	0.3141	1.2500	0.096*
C9A	0.6742 (7)	0.2505 (7)	0.9954 (9)	0.060 (2)
H9AA	0.7369	0.2278	0.9859	0.090*
H9AB	0.6531	0.2775	0.9276	0.090*
H9AC	0.6329	0.2016	1.0149	0.090*
C1B	0.5136 (6)	0.3459 (5)	0.5257 (7)	0.0397 (16)
C2B	0.5680 (6)	0.3721 (6)	0.6158 (7)	0.0479 (18)
H2BA	0.6138	0.4166	0.6083	0.057*
C3B	0.5523 (7)	0.3301 (7)	0.7180 (8)	0.058 (2)
H3BA	0.5878	0.3469	0.7792	0.070*
C4B	0.4861 (8)	0.2656 (7)	0.7282 (9)	0.065 (3)
H4BA	0.4768	0.2382	0.7965	0.078*
C5B	0.4311 (7)	0.2390 (6)	0.6379 (8)	0.055 (2)
H5BA	0.3868	0.1932	0.6462	0.066*
C6B	0.4427 (7)	0.2813 (5)	0.5347 (8)	0.0466 (19)
C7B	0.3803 (7)	0.2593 (5)	0.4390 (8)	0.0490 (19)
H7BA	0.4187	0.2492	0.3738	0.059*
H7BB	0.3463	0.2039	0.4545	0.059*
C8B	0.2391 (7)	0.3300 (8)	0.5030 (9)	0.061 (3)
H8BA	0.2149	0.2696	0.5090	0.092*
H8BB	0.1889	0.3706	0.4843	0.092*
H8BC	0.2662	0.3478	0.5724	0.092*
C9B	0.2642 (8)	0.3146 (8)	0.3089 (9)	0.075 (3)
H9BA	0.2160	0.2699	0.3197	0.112*
H9BB	0.3093	0.2925	0.2564	0.112*
H9BC	0.2364	0.3693	0.2815	0.112*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pd1	0.0294 (2)	0.0285 (2)	0.0404 (3)	0.00255 (18)	-0.0012 (2)	0.00392 (19)
Pd2	0.0316 (3)	0.0303 (3)	0.0412 (3)	-0.00305 (18)	-0.0025 (2)	-0.0019 (2)
Se1A	0.0338 (3)	0.0395 (4)	0.0412 (4)	0.0011 (3)	-0.0012 (3)	-0.0027 (3)
Se1B	0.0422 (4)	0.0342 (4)	0.0424 (4)	-0.0013 (3)	0.0037 (3)	-0.0015 (3)

Cl1A	0.0511 (11)	0.0351 (9)	0.104 (2)	-0.0069 (8)	0.0006 (12)	0.0004 (10)
Cl1B	0.0410 (10)	0.0524 (12)	0.111 (2)	0.0080 (9)	0.0036 (12)	0.0005 (13)
N1A	0.034 (3)	0.037 (3)	0.056 (4)	0.013 (2)	0.000 (3)	0.003 (3)
N1B	0.043 (3)	0.040 (3)	0.052 (4)	-0.015 (3)	-0.003 (3)	-0.003 (3)
C1A	0.033 (3)	0.037 (4)	0.042 (4)	-0.001 (3)	0.010 (3)	-0.002 (3)
C2A	0.056 (4)	0.046 (4)	0.043 (4)	0.001 (3)	0.008 (4)	0.007 (3)
C3A	0.069 (6)	0.051 (5)	0.047 (5)	-0.007 (4)	0.006 (4)	0.004 (4)
C4A	0.070 (6)	0.063 (6)	0.052 (5)	-0.013 (5)	0.017 (5)	-0.006 (4)
C5A	0.047 (4)	0.052 (5)	0.075 (6)	0.000 (4)	0.017 (4)	-0.002 (4)
C6A	0.034 (4)	0.046 (4)	0.055 (5)	0.002 (3)	0.000 (3)	-0.003 (3)
C7A	0.028 (3)	0.051 (4)	0.053 (4)	0.010 (3)	-0.003 (3)	0.001 (4)
C8A	0.065 (6)	0.063 (6)	0.064 (6)	0.030 (5)	-0.005 (5)	0.012 (5)
C9A	0.057 (6)	0.051 (5)	0.071 (7)	0.020 (4)	0.009 (5)	-0.008 (4)
C1B	0.043 (4)	0.031 (3)	0.046 (4)	0.002 (3)	0.004 (3)	0.006 (3)
C2B	0.042 (4)	0.055 (4)	0.047 (5)	0.000 (3)	-0.006 (3)	0.006 (4)
C3B	0.055 (5)	0.070 (6)	0.049 (5)	0.011 (5)	-0.008 (4)	0.005 (4)
C4B	0.073 (7)	0.057 (5)	0.065 (6)	0.012 (5)	0.011 (5)	0.019 (5)
C5B	0.058 (5)	0.049 (4)	0.059 (5)	0.006 (4)	0.003 (4)	0.017 (4)
C6B	0.051 (5)	0.030 (3)	0.058 (5)	-0.001 (3)	0.009 (4)	-0.001 (3)
C7B	0.061 (5)	0.029 (3)	0.057 (5)	-0.009 (3)	0.006 (4)	-0.003 (3)
C8B	0.055 (5)	0.065 (6)	0.063 (6)	-0.022 (5)	0.011 (5)	0.001 (5)
C9B	0.077 (7)	0.086 (8)	0.062 (6)	-0.051 (6)	-0.008 (5)	-0.013 (6)

Geometric parameters (Å, °)

Pd1—N1A	2.186 (6)	С5А—Н5АА	0.9300
Pd1—Cl1A	2.335 (2)	C6A—C7A	1.505 (12)
Pd1—Se1A	2.3858 (9)	С7А—Н7АА	0.9700
Pd1—Se1A ⁱ	2.4043 (8)	С7А—Н7АВ	0.9700
Pd1—Se1B ⁱⁱ	3.4307 (9)	С8А—Н8АА	0.9600
Pd2—N1B	2.180 (6)	C8A—H8AB	0.9600
Pd2—Cl1B	2.341 (2)	C8A—H8AC	0.9600
Pd2—Se1B	2.3872 (9)	С9А—Н9АА	0.9600
Pd2—Se1B ⁱ	2.4021 (8)	С9А—Н9АВ	0.9600
Pd2—Se1A ⁱⁱⁱ	3.4317 (9)	С9А—Н9АС	0.9600
Se1A—C1A	1.905 (8)	C1B—C2B	1.391 (12)
Se1A—Pd1 ⁱ	2.4043 (8)	C1B—C6B	1.393 (12)
Se1B—C1B	1.928 (8)	C2B—C3B	1.402 (13)
Se1B—Pd2 ⁱ	2.4021 (8)	C2B—H2BA	0.9300
N1A—C7A	1.468 (11)	C3B—C4B	1.345 (15)
N1A—C9A	1.474 (12)	СЗВ—НЗВА	0.9300
N1A—C8A	1.486 (12)	C4B—C5B	1.400 (15)
N1B—C8B	1.477 (12)	C4B—H4BA	0.9300
N1B—C7B	1.487 (12)	C5B—C6B	1.406 (12)
N1B—C9B	1.488 (12)	С5В—Н5ВА	0.9300
C1A—C2A	1.393 (11)	С6В—С7В	1.493 (13)
C1A—C6A	1.425 (11)	С7В—Н7ВА	0.9700
C2A—C3A	1.419 (12)	С7В—Н7ВВ	0.9700

C2A—H2AA	0.9300	C8B—H8BA	0.9600
C3A—C4A	1.388 (15)	C8B—H8BB	0.9600
СЗА—НЗАА	0.9300	C8B—H8BC	0.9600
C4A—C5A	1.367 (15)	С9В—Н9ВА	0.9600
C4A—H4AA	0.9300	С9В—Н9ВВ	0.9600
C5A—C6A	1.404 (13)	С9В—Н9ВС	0.9600
N1A—Pd1—Cl1A	95.12 (19)	C1A—C6A—C7A	119.0 (7)
N1A—Pd1—Se1A	91.53 (18)	N1A—C7A—C6A	112.2 (6)
Cl1A—Pd1—Se1A	173.08 (7)	N1A—C7A—H7AA	109.2
N1A—Pd1—Se1A ⁱ	172.88 (18)	С6А—С7А—Н7АА	109.2
Cl1A—Pd1—Se1A ⁱ	91.99 (6)	N1A—C7A—H7AB	109.2
Se1A—Pd1—Se1A ⁱ	81.38 (3)	С6А—С7А—Н7АВ	109.2
N1A—Pd1—Se1B ⁱⁱ	97.4 (2)	Н7АА—С7А—Н7АВ	107.9
Cl1A—Pd1—Se1B ⁱⁱ	99.90 (8)	N1A—C8A—H8AA	109.5
Se1A—Pd1—Se1B ⁱⁱ	81.06 (3)	N1A—C8A—H8AB	109.5
Se1A ⁱ —Pd1—Se1B ⁱⁱ	80.97 (3)	H8AA—C8A—H8AB	109.5
N1B—Pd2—Cl1B	95.2 (2)	N1A—C8A—H8AC	109.5
N1B—Pd2—Se1B	91.72 (19)	Н8АА—С8А—Н8АС	109.5
Cl1B—Pd2—Se1B	172.69 (7)	H8AB—C8A—H8AC	109.5
N1B—Pd2—Se1B ⁱ	172.78 (19)	N1A—C9A—H9AA	109.5
Cl1B—Pd2—Se1B ⁱ	91.97 (7)	N1A—C9A—H9AB	109.5
Se1B—Pd2—Se1B ⁱ	81.09 (3)	Н9АА—С9А—Н9АВ	109.5
N1B—Pd2—Se1A ⁱⁱⁱ	97.4 (2)	N1A—C9A—H9AC	109.5
Cl1B—Pd2—Se1A ⁱⁱⁱ	100.11 (9)	Н9АА—С9А—Н9АС	109.5
Se1B—Pd2—Se1A ⁱⁱⁱ	81.17 (3)	Н9АВ—С9А—Н9АС	109.5
Se1B ⁱ —Pd2—Se1A ⁱⁱⁱ	80.83 (3)	C2B—C1B—C6B	122.1 (8)
C1A—Se1A—Pd1	88.4 (2)	C2B—C1B—Se1B	121.8 (6)
C1A—Se1A—Pd1 ⁱ	107.9 (2)	C6B—C1B—Se1B	116.0 (6)
Pd1—Se1A—Pd1 ⁱ	97.39 (3)	C1B—C2B—C3B	118.7 (8)
C1B—Se1B—Pd2	87.8 (2)	C1B—C2B—H2BA	120.7
C1B—Se1B—Pd2 ⁱ	108.2 (2)	C3B—C2B—H2BA	120.7
Pd2—Se1B—Pd2 ⁱ	97.66 (3)	C4B—C3B—C2B	120.4 (9)
C7A—N1A—C9A	108.7 (7)	С4В—С3В—Н3ВА	119.8
C7A—N1A—C8A	109.4 (7)	С2В—С3В—Н3ВА	119.8
C9A—N1A—C8A	107.7 (7)	C3B—C4B—C5B	121.2 (9)
C7A—N1A—Pd1	112.5 (4)	СЗВ—С4В—Н4ВА	119.4
C9A—N1A—Pd1	111.3 (5)	C5B—C4B—H4BA	119.4
C8A—N1A—Pd1	107.1 (5)	C4B—C5B—C6B	120.2 (9)
C8B—N1B—C7B	107.6 (7)	C4B—C5B—H5BA	119.9
C8B—N1B—C9B	107.2 (8)	C6B—C5B—H5BA	119.9
C7B—N1B—C9B	109.0 (8)	C1B—C6B—C5B	117.3 (8)
C8B—N1B—Pd2	112.8 (6)	C1B—C6B—C7B	121.2 (8)
C7B—N1B—Pd2	112.9 (5)	C5B—C6B—C7B	121.5 (8)
C9B—N1B—Pd2	107.1 (6)	N1B—C7B—C6B	111.9 (7)
C2A—C1A—C6A	120.6 (7)	N1B—C7B—H7BA	109.2

C2A—C1A—Se1A	122.9 (6)	С6В—С7В—Н7ВА	109.2
C6A—C1A—Se1A	116.5 (6)	N1B—C7B—H7BB	109.2
C1A—C2A—C3A	119.5 (8)	С6В—С7В—Н7ВВ	109.2
C1A—C2A—H2AA	120.2	H7BA—C7B—H7BB	107.9
C3A—C2A—H2AA	120.2	N1B—C8B—H8BA	109.5
C4A—C3A—C2A	119.1 (9)	N1B—C8B—H8BB	109.5
С4А—С3А—НЗАА	120.5	H8BA—C8B—H8BB	109.5
С2А—С3А—НЗАА	120.5	N1B—C8B—H8BC	109.5
C5A—C4A—C3A	121.6 (9)	H8BA—C8B—H8BC	109.5
С5А—С4А—Н4АА	119.2	H8BB—C8B—H8BC	109.5
СЗА—С4А—Н4АА	119.2	N1B—C9B—H9BA	109.5
C4A—C5A—C6A	121.0 (9)	N1B—C9B—H9BB	109.5
C4A—C5A—H5AA	119.5	H9BA—C9B—H9BB	109.5
C6A—C5A—H5AA	119.5	NIB—C9B—H9BC	109.5
CSA = C6A = CTA	118.1 (8)	H9BA—C9B—H9BC	109.5
CSA—COA—C/A	123.0 (8)	Н9ВВ—С9В—Н9ВС	109.5
N1A—Pd1—Se1A—C1A	60.9 (3)	Pd1—Se1A—C1A—C2A	113.8 (7)
Cl1A—Pd1—Se1A—C1A	-103.4 (7)	Pd1 ¹ —Se1A—C1A—C2A	16.6 (7)
Se1A ⁱ —Pd1—Se1A—C1A	-119.7 (2)	Pd1—Se1A—C1A—C6A	-65.4 (6)
Se1B ⁱⁱ —Pd1—Se1A—C1A	158.1 (2)	Pd1 ⁱ —Se1A—C1A—C6A	-162.6 (5)
N1A—Pd1—Se1A—Pd1 ⁱ	168.8 (2)	C6A—C1A—C2A—C3A	-0.7 (13)
Cl1A—Pd1—Se1A—Pd1 ⁱ	4.5 (7)	Se1A—C1A—C2A—C3A	-179.9 (7)
Se1A ⁱ —Pd1—Se1A—Pd1 ⁱ	-11.87 (5)	C1A—C2A—C3A—C4A	-1.7 (14)
Se1B ⁱⁱ —Pd1—Se1A—Pd1 ⁱ	-94.00 (3)	C2A—C3A—C4A—C5A	1.3 (15)
N1B—Pd2—Se1B—C1B	-60.7 (3)	C3A—C4A—C5A—C6A	1.5 (16)
Cl1B—Pd2—Se1B—C1B	101.4 (7)	C4A—C5A—C6A—C1A	-3.9 (14)
Se1B ⁱ —Pd2—Se1B—C1B	120.0 (2)	C4A—C5A—C6A—C7A	176.2 (9)
Se1A ⁱⁱⁱ —Pd2—Se1B—C1B	-157.9 (2)	C2A—C1A—C6A—C5A	3.4 (12)
N1B—Pd2—Se1B—Pd2 ⁱ	-168.8 (2)	Se1A—C1A—C6A—C5A	-177.4 (7)
Cl1B—Pd2—Se1B—Pd2 ⁱ	-6.7 (7)	C2A—C1A—C6A—C7A	-176.6 (7)
Se1B ⁱ —Pd2—Se1B—Pd2 ⁱ	11.94 (5)	Se1A—C1A—C6A—C7A	2.6 (10)
Se1A ⁱⁱⁱ —Pd2—Se1B—Pd2 ⁱ	93.95 (3)	C9A—N1A—C7A—C6A	70.6 (9)
Cl1A—Pd1—N1A—C7A	163.2 (5)	C8A—N1A—C7A—C6A	-172.0 (7)
Se1A—Pd1—N1A—C7A	-14.9 (6)	Pd1—N1A—C7A—C6A	-53.1 (8)
Se1A ⁱ —Pd1—N1A—C7A	-20 (2)	C5A—C6A—C7A—N1A	-105.4 (9)
Se1B ⁱⁱ —Pd1—N1A—C7A	-96.1 (5)	C1A—C6A—C7A—N1A	74.7 (10)
Cl1A—Pd1—N1A—C9A	41.0 (6)	Pd2—Se1B—C1B—C2B	-112.6 (7)
Se1A—Pd1—N1A—C9A	-137.1 (6)	Pd2 ⁱ —Se1B—C1B—C2B	-15.2 (7)
Se1A ⁱ —Pd1—N1A—C9A	-142.1 (15)	Pd2—Se1B—C1B—C6B	66.1 (6)
Se1B ⁱⁱ —Pd1—N1A—C9A	141.7 (6)	Pd2 ⁱ —Se1B—C1B—C6B	163.5 (6)
Cl1A—Pd1—N1A—C8A	-76.5 (6)	C6B—C1B—C2B—C3B	1.8 (13)
Se1A—Pd1—N1A—C8A	105.4 (6)	Se1B—C1B—C2B—C3B	-179.5 (6)
Se1A ⁱ —Pd1—N1A—C8A	100.4 (16)	C1B—C2B—C3B—C4B	0.2 (14)
Se1B ⁱⁱ —Pd1—N1A—C8A	24.2 (6)	C2B—C3B—C4B—C5B	-0.3 (15)
Cl1B—Pd2—N1B—C8B	-39.8 (7)	C3B—C4B—C5B—C6B	-1.6 (15)

Se1B—Pd2—N1B—C8B	137.9 (6)	C2B—C1B—C6B—C5B	-3.6 (12)
Se1B ⁱ —Pd2—N1B—C8B	144.0 (14)	Se1B—C1B—C6B—C5B	177.7 (6)
Se1A ⁱⁱⁱ —Pd2—N1B—C8B	-140.7 (6)	C2B—C1B—C6B—C7B	175.2 (8)
Cl1B—Pd2—N1B—C7B	-162.1 (5)	Se1B—C1B—C6B—C7B	-3.5 (11)
Se1B—Pd2—N1B—C7B	15.6 (6)	C4B—C5B—C6B—C1B	3.4 (13)
Se1B ⁱ —Pd2—N1B—C7B	22 (2)	C4B—C5B—C6B—C7B	-175.4 (9)
Se1A ⁱⁱⁱ —Pd2—N1B—C7B	97.0 (6)	C8B—N1B—C7B—C6B	-74.1 (9)
Cl1B—Pd2—N1B—C9B	77.9 (7)	C9B—N1B—C7B—C6B	170.0 (7)
Se1B—Pd2—N1B—C9B	-104.4 (7)	Pd2—N1B—C7B—C6B	51.1 (8)
Se1B ⁱ —Pd2—N1B—C9B	-98.3 (17)	C1B—C6B—C7B—N1B	-72.6 (10)
Se1A ⁱⁱⁱ —Pd2—N1B—C9B	-23.1 (7)	C5B—C6B—C7B—N1B	106.2 (9)
	1 (1	

Symmetry codes: (i) -*x*+1, -*y*+1, *z*; (ii) *x*, *y*, *z*+1; (iii) -*x*+1, -*y*+1, *z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A		
C5A—H5AA···Cl1A ^{iv}	0.93	2.91	3.782 (10)	156.		
C7A—H7AA···Cl1A ^{iv}	0.97	2.94	3.853 (8)	158.		
C9A—H9AC···Cl1A	0.96	2.79	3.325 (10)	116.		
C5B—H5BA····Cl1B ^v	0.93	2.94	3.808 (11)	156.		
C8B—H8BB···Cl1B	0.96	2.80	3.347 (11)	117.		
Summatry adds: (iv) $x+1/2 = x+1/2 = x+1/2 = x+1/2 = x+1/2$						

Symmetry codes: (iv) x+1/2, -y+1/2, -z+2; (v) -x+1/2, y-1/2, -z+1.

Fig. 1

